Stabilizing Slides in Pennington Formation with Drilled Ground Anchors

Site

Slope Stabilization @ I-40 WB MM 342, Roane Co. Geotechnical Engineer: WSP\Golder Contractor: Goettle Contract: CNU 224

Presenter: Robert Jowers, PE

Photo Source: TDOT

Presentation Agenda

TDOT geohazardPennington Formation colluvium

Extensive site characterization and plans development effort

System components used and schedule of progress

Ground anchors could be a new slope stabilization tool at TDOT

Photo Source: George Hornal\TDOT

Source: Moore, H., "A Geologic Trip Across Tennessee Interstate 40", University of Tennessee Press, 1994

Pennington Shale Formation Test Boring (1/3
 Notice the color on the drill matching the test boring samples

Contains predominate shales that tend to weather differentially with overlying Gizzard Group Sandstone

Creates unconsolidated colluvium, containing sandstone cobbles to boulders

Through mapping, Golder identified an upper sandstone member, and a lower shale member

The subject colluvium is more pervious than underlying strata – so trapped water pressures are created

Source: David Grooms\David Royster\TDOT

Source: Golder \ TDOT

If there is a practical colluvium depth, the landslide can be stabilized practically.

I-40 Construction in 1968

- South of Walden Ridge, near the city of Rockwood
- Fill Slide proposed near MM 341.5-342
- Halted Construction

Source: George Hornal\TDOT

I-40 Construction in 1968

Entire corridor is built on unstable colluvial material

Must contend with the Pennington Shale colluvium

Source: George Hornal \ TDOT

I-40 Rockwood Corridor Maintenance Time Line

Slope movement continues

*1970's TDOT later installed drilled horizontal drains

***2012 Deep wells were installed**

2017 Replaced pinched off inclinometers

2018 Future plan of action could be drastic \ significant drilled ground anchors

Source: George Hornal \ TDOT

Landslides Triggered Feb. 22, 2019

National Weather Service (2019). Historic Flooding Across The Tennessee Valley. Retrieved from https://www.weather.gov/mrx/hydroevent

Historic Flooding Across The Tennessee Valley February 22-23, 2019

Radar loop of composite reflectivity

from early morning through mid afternoon (click to enlarge)

Landslides Triggered

Feb. 22, 2019 Rain Began

Over 100 Landslides Occurred because of flooding

Two Sites along EB and WB were identified that required immediate stabilization repair – Project Site

National Weather Service (2019). Historic Flooding Across The Tennessee Valley. Retrieved from https://www.weather.gov/mrx/hydroevent

Landslides Triggered

I-40, Roane Co. Project Site shown in red circle

National Weather Service (2019). *February 2019 Rainfall Compared to December 1926 Rainfall*. Retrieved from <u>https://www.weather.gov/ohx/February2019vsDecember1926</u>

Practical Landslide Stabilization

RESTRAINT

Practical Landslide Stabilization

Restraint

- Stone Buttress
- Soldier pile lagging retaining walls (often w\ drilled anchors)
- Reticulated micropiles (used to bridge terrain in Foothills Pkwy)

Royster, D. L. (1978). Landslide Remedial Measures. *Prepared for Presentation at the* 37th Annual SASHTO Convention, October, 1978, Nashville, Tennessee)

Restraint – Stone Buttress

Earthwork Volume excessive
 Practical if colluvium shallow
 Typically requires road closure
 Impractical in urban \ high ADT

Source: Barry McClendon, TDOT R2 Survey Office, August 6, 2019

Restraint – Stone Buttress

SR-85, Fentress Co.

Source: Barry McClendon, TDOT R2 Survey Office, August 6, 2019

Restraint – Drilled Anchors

Practical – But major investment

Costs and benefits warrants investment on interstate slopes

Source: FHWA, GEC Circular No. 4, Ground Anchors and Anchored Systems, 1999

Project Vicinity

Source: Golder \ TDOT

Project Vicinity

Slope movement occurs

Further downhill 1.25 mi. – eastward

Two separate slides

♦ KS Ware retained to develop plans I-40 EB MM 343 (+\-)

♦ Golder retained to develop plans I-40 WB MM 342 (+\-)

EB Project Design

KS Ware's EB MM 343 site utilized ground anchors supporting a soldier pile \ lagging wall
 Bid just under \$3.5
 Good administration
 Straight forward, single anchor row

Source: TDOT

Source: TDOT

EB Project Construction Phase Retaining Wall Complete

November 2021

Much Larger Area

Extensive Site Characterization Required

Thirty-five test borings
Developed six slope inclinometers

Source: Golder \ TDOT

Extensive Site Characterization Required

Thirty-five test borings
Developed six slope inclinometers
Twenty-two vibrating wire piezometers

Source: Golder \ TDOT

Extensive Site Characterization Required

Thirty-five test borings
Developed six slope inclinometers
Twenty-two vibrating wire piezometers
Three electrical resistivity lines

Source: Golder \ TDOT

Extensive Site Characterization Required

Thirty-five test borings
Developed six slope inclinometers
Twenty-two vibrating wire piezometers
Three electrical resistivity lines
Detailed geological mapping

Source: Golder \ TDOT

Extensive Site Characterization Required

Thirty-five test borings
Developed six slope inclinometers
Twenty-two vibrating wire piezometers
Three electrical resistivity lines
Detailed geological mapping
Using sophisticated geologic modeling software -LeapFrog

ldentified Four significant slides

Source: Golder \ TDOT

WB Design Analyses

Deep Colluvium – Significant

Fifty-feet grid

Source: Golder \ TDOT

____.

Contract Plans Design

Acceptable Type of Earth Retention:

Ground Anchors with Concrete Bearing Blocks

✤Full Anchor Schedule Design – @ 1700!

Drill depths between approx. 150 ft. and 250ft.

5. GROUND IMPROVEMENT TO BE USED AS NEEDED TO PROVIDE ADEQUATE BEARING. GROUND IMPROVEMENT IS INCIDENTAL TO BEARING BLOCK PAY ITEM.

Source: Golder \ TDOT

WB Plans Design - Anchors

✤Bid plans required 3, 7, and 9 Strand cable

Design loads of 80 kip, 246 kip and 317 kip

✤Drill depths between approx. 150 ft. and 250 ft.

WB Plans Design – Concrete Blocks

Source: TDOT

1,700 Concrete Blocks

Designed by Contractor using design guidance in plans

Contractor to submit shop drawing design for approval to Engineer

Foundation improvement specified incidental to cost of block item

Project Bid

Two Sites combined & Bid
 Design-Bid-Build contract
 Bids Opened May 15th, 2020
 Apparent Low Bid of \$33 M
 Awarded to Goettle, Inc.

Project Const. Admin. - VECP

Contractor presented Value Engineering Change Proposal
 Construction companies have different equipment available
 Different work schedules

Project Const. Admin.-VECP

*****Decrease number of concrete blocks to about 600

Increase the tension load significantly

Pennington Shale's ability to meet stress transfer

No test load data

Known knowns: Inaccessible and Tough Drilling

Source: Shop Drawings Value Engineering Anchor Stabilization System, I-40 (WB) Near 342, June 17, 2022, Goettle \ Burns Cooley Dennis, Inc. \ TDOT

TA1 TEST SETUP

Project Const. Admin -VECP

Prior to consideration, TDOT required load tested anchors

Design loads of 500 k were applied

12 strand anchors

8 in. diameter

♦ VECP approved

Source: Shop Drawings Value Engineering Anchor Stabilization System, I-40 (WB) Near 342, June 17, 2022, Geottle \ Burns Cooley Dennis, Inc. \ TDOT

Project Const. Admin - VECP

Initial design based on quality site characterization

*Added value to the project - solid

The slip surface \ minimum anchor free length evaluated

Strategic bearing strata location was evaluated

Anchor Drilling

Anchor Drilling

Anchor Drilling

October 2021

Anchor Drilling – Measuring Inclination

Anchor Drilling - Concept TYPICAL DETAIL SECTION

Anchor Drilling - Strand Placement

PERFORMED ON 5% OF REMAINING ANCHORS.

Anchor Drilling - Strand Insertion

August 2021

Concrete Blocks – Pre-Cast Site

December 2021

Concrete Blocks – Set In Place using Crane

October 2021

Concrete Block - Final Position

December 2021

Concrete Blocks – Next Bench Excavation

MAY 2022

Anchor Stressing & Load Testing

Anchor Stressing & Load Testing

December 2021

Source: TDOT

Anchor Stressing & Load Testing

December 2021

Source: TDOT

Anchor Stressing & Load Testing

Anchor Stressing & Load Testing

Anchor Stressing & Load Testing

Anchor Stressing & Load Testing Tracking Progress using Excel

	~	U	<u> </u>	υ	L	1	U
19	1-A18	4	TDOT Acceptance	PAID	20	4/20/2022	
20	1-A19	4	TDOT Acceptance	PAID	20	4/20/2022	
21	1-A20	4	TDOT Acceptance	PAID	20	4/20/2022	
22	1-A21	4	TDOT Acceptance	PAID	20	4/20/2022	
23	1-A22	4	TDOT Acceptance	PAID	20	4/20/2022	
24	1-A23	4	TDOT Acceptance	PAID	20	4/21/2022	
25	1-A24	4	TDOT Acceptance	PAID	20	4/21/2022	
26	1-A25	4	TDOT Acceptance	PAID	20	4/21/2022	
27	1-A26	4	TDOT Acceptance	PAID	20	4/21/2022	
28	1-A27	4	TDOT Acceptance	PAID	20	4/21/2022	
29	1-A28	4	TDOT Acceptance	RRENT ESTIMA	21	5/19/2022	
30	1-A29	4	TDOT Acceptance	RRENT ESTIMA	21	5/19/2022	
31	1-A30	4	TDOT Acceptance	RRENT ESTIMA	21	5/19/2022	
32	1-A31	1	Installed, Not Tested	NOT PAID	NOT YET PAID		
33	1-A32	0	Not Installed	NOT PAID	NOT YET PAID		
34	1-A33	1	Installed, Not Tested	NOT PAID	NOT YET PAID		
35	1-A34	1	Installed, Not Tested	NOT PAID	NOT YET PAID		
36	1-A35	1	Installed, Not Tested	NOT PAID	NOT YET PAID		
37	1-A36	1	Installed, Not Tested	NOT PAID	NOT YET PAID		
38	1-A37	1	Installed, Not Tested	NOT PAID	NOT YET PAID		
39	1-A38	1	Installed, Not Tested	NOT PAID	NOT YET PAID		
40	1-A39	0	Not Installed	NOT PAID	NOT YET PAID		
41	1-A40	0	Not Installed	NOT PAID	NOT YET PAID		
42	1-A41	0	Not Installed	NOT PAID	NOT YET PAID		
43	1-A42	0	Not Installed	NOT PAID	NOT YET PAID		
44	1-A43	0	Not Installed	NOT PAID	NOT YET PAID		
45	1-A44	0	Not Installed	NOT PAID	NOT YET PAID		
46	1-B1	4	TDOT Acceptance	RRENT ESTIMA	21	5/18/2022	
47	1-B2	4	TDOT Acceptance	RRENT ESTIMA	21	5/18/2022	
48	1-R3	4	TDOT Accentance	RRENT ESTIMA	21	5/13/2022	

Anchor Stressing & Load Testing Tracking Progress using Excel

Progress Time Line

Source: TDOT

APRIL 2021

Progress Time Line

OCTOBER 2021

Source: TDOT

Progress Time Line

Source: TDOT

Progress Time Line JANUARY 25, 2022

Source: TDOT

Progress Time Line MARCH 16, 2022

Progress Time Line

Looking West at Zone 3

MAY 2022

Looking East at Zone 3

MAY 2022

Progress Time Line

Progress Time Line AUGUST 16, 2022

	Status Number	Indication	Instances	% of Total	1st Day Drilling	8/5/2021	
	0	Not Installed	57	9.42%	Days Elapsed Since	397	
Status	1	Installed, Not Tested	37	6.12%	Avg. Anchors	1.29	
	2	Installed, Tested, Pending Test Submission	0	0.00%	Approved Per		
Key	3	Pending TDOT Acceptance	0	0.00%			
	4	TDOT Acceptance	511	84.46%	Calendar Day		
	5	Design Or Testing Issue		0.00%	Projected Anchor		
		100.00%	Completion By Straight	11/18/2022			
St	atus Date	9/6/2022			Line Interpolation	11/ 10/ 2022	

End of Presentation – Time for Questions?