Stabilizing Slides in Pennington Formation with Drilled Ground Anchors

Stie

Slope Stabilization @ I-40 WB MM 342, Roane Co. Geotechnical Engineer: WSP\Golder
Contractor: Goettle
Contract: CNU 224
Presenter: Robert Jowers, PE
TN TDOT
Transportation

Presentation Agenda

TDOT geohazard

- Penningron Formation colluvium
*Extensive site characterization and plans development effort

System components used and schedule of progress

Ground anchors could be a new slope stabilization tool at TDOT

Background

Geology \backslash Geography Creates Divisions

- TN contains nine physiographic regions

[^0]
Geology

*Pennington Shale Formation Test Boring ($1 / 3$

Notice the color on the drill matching the test boring samples

Geology

- Contains predominate shales that tend to weather differentially with overlying Gizzard Group Sandstone

- Creates unconsolidated colluvium, containing sandstone cobbles to boulders

*Through mapping, Golder identified an upper sandstone member, and a lower shale member

The subject colluvium is more pervious than underlying strata - so trapped water pressures are created

Geology

If there is a practical colluvium depth, the landslide can be stabilized practically.

I-40 Construction in 1968

*South of Walden Ridge, near the city of Rockwood
Fill Slide proposed near MM 341.5342

* Halted Construction

I-40 Construction in 1968

* Entire corridor is built on unstable colluvial material

Must contend with the Pennington Shale colluvium

I-40 Rockwood Corridor Maintenance Time Line

Slope movement continues
*1970’s TDOT later installed drilled horizontal drains

2012 Deep wells were installed
-2017 Replaced pinched off inclinometers
*2018 Future plan of action could be drastic \significant drilled ground anchors

Landslides Triggered Feb. 22, 2019

Historic Flooding Across The Tennessee Valley
 February 22-23, 2019
 Radar loop of composite reflectivity
 Landslides Triggered

from early morning through mid afternoon (click to enlarge)

*Feb. 22, 2019 Rain Began

Over 100 Landslides Occurred because of flooding
*Two Sites along EB and WB were identified that required immediate stabilization repair - Project Site

Landslides
 Triggered

I-40, Roane Co. Project Site shown in red circle

Practical Landslide Stabilization

RESTRAINT

Practical Landslide Stabilization

Restraint

- Stone Buttress
- Soldier pile lagging retaining walls (often $w \backslash$ drilled anchors)
- Reticulated micropiles (used to bridge terrain in Foothills Pkwy)

Restraint Stone Buttress

Earthwork Volume excessive
Practical if colluvium shallow
*Typically requires road closure
*Impractical in urban \high ADT

Source: Barry McClendon, TDOT R2 Survey Office, August 6, 2019

Restraint Stone Buttress

-SR-85, Fentress Co.

Restraint Drilled Anchors

*Practical - But major investment

Costs and benefits warrants investment on interstate slopes

Project Vicinity

Source: Golder \TDOT

Project Vicinity

Slope movement occurs

Further downhill 1.25 mi . - eastward

* Two separate slides
*SS Ware retained to develop plans I40 EB MM 343 (+\-)
* Golder retained to develop plans I-40 WB MM 342 (+\-)
*KS Ware's EB MM 343 site utilized ground anchors supporting a soldier pile \lagging wall
- Bid just under \$3.5
- Good administration
- Straight forward, single anchor row

EB Project Design

Source: TDOT

EB Project Construction Phase Retaining Wall Complete

November 2021

Source: Golder \TDOT

WB Site Characterization

Much Larger Area
*Extensive Site Characterization Required
*Thirty-five test borings
:Developed six slope inclinometers

Source: Golder \TDOT

WB Site Characterization

\author{

* Extensive Site Characterization Required
}
*hirty-five test borings
- Developed six slope inclinometers
* Twenty-two vibrating wire piezometers

WB Site Characterization

*Extensive Site Characterization Required

*Thirty-five test borings

- Developed six slope inclinometers
* Twenty-two vibrating wire piezometers
*Three electrical resistivity lines

Source: Golder \TDOT

WB Site Characterization

:Extensive Site Characterization Required
*Thirty-five test borings

- Developed six slope inclinometers
:Twenty-two vibrating wire piezometers
:Three electrical resistivity lines
: Detailed geological mapping

WB Site Characterization

*Extensive Site Characterization Required

*Thirty-five test borings

- Developed six slope inclinometers
:Twenty-two vibrating wire piezometers
*Three electrical resistivity lines
* Detailed geological mapping

Using sophisticated geologic modeling software LeapFrog
tennessee department of transportation

Source: Golder \TDOT

Contract Plans Design

*Acceptable Type of Earth Retention:
Ground Anchors with Concrete Bearing Blocks
*Full Anchor Schedule Design - @ 1700!

* Drill depths between approx. 150 ft . and 250 ft .

WB Plans Design - Anchors

*Bid plans required 3, 7, and 9 Strand cable
*Design loads of 80 kip, 246 kip and 317 kip

Drill depths between approx. 150 ft . and 250 ft .

WB Plans Design - Concrete Blocks

Source: TDOT

Project Bid

Two Sites combined \& Bid
Design-Bid-Build contract
Bids Opened May 15th, 2020
Apparent Low Bid of $\$ 33$ M

* Awarded to Goettle, Inc.

Project Const. Admin. - VECP

*Contractor presented Value Engineering Change Proposal
*Construction companies have different equipment available

- Different work schedules

Project Const. Admin.-VECP

*Decrease number of concrete blocks to about 600
\% Increase the tension load significantly

Pennington Shale's ability to meet stress transfer

No test load data

Known knowns: Inaccessible and Tough Drilling

TA1 TEST SETUP

Project Const. Admin VECP

* Prior to consideration, TDOT required load tested anchors
* Design loads of 500 k were applied
* 12 strand anchors
- 8 in. diameter
- VECP approved

Project Const. Admin - VECP

- Initial design based on quality site characterization

Added value to the project - solid
*The slip surface \backslash minimum anchor free length evaluated
-Strategic bearing strata location was evaluated

Anchor Drilling

Anchor Drilling

TYPICAL SECTION

Anchor Drilling

Anchor Drilling

October 2021

Anchor Drilling - Measuring Inclination

OCTOBER 2021

Anchor Drilling - Concept

TYPICAL DETAIL SECTION

Anchor Drilling - Strand Placement

TYPICAL DETAIL SECTION

Anchor Drilling - Strand Insertion

August 2021

Concrełe Blocks

Concrete Blocks - Pre-Cast Site

Concrete Blocks - Set In Place using Crane

Concrete Block - Final Position

December 2021

Concrete Blocks Next Bench Excavation

MAY 2022

Anchor Stressing \& Load Testing

Anchor Stressing \& Load Testing

December 2021

Source: TDOT

Anchor Stressing \& Load Testing

December 2021

Source: TDOT

Anchor Stressing \& Load Testing

ELABTC ELOMGATON (In) | Toasl Elonvalon | 7.565 |
| :--- | :--- |

Anchor

Stressing \& Load Testing

strands
Unt Strad Nea

Anchor
 Stressing \& Load Testing

Anchor Stressing \& Load Testing Tracking Progress using Excel

	n	\checkmark		\checkmark		
19	1-A18	4	TDOT Acceptance	PAID	20	4/20/2022
20	1-A19	4	TDOT Acceptance	PAID	20	4/20/2022
21	1-A20	4	TDOT Acceptance	PAID	20	4/20/2022
22	1-A21	4	TDOT Acceptance	PAID	20	4/20/2022
23	1-A22	4	TDOT Acceptance	PAID	20	4/20/2022
24	1-A23	4	TDOT Acceptance	PAID	20	4/21/2022
25	1-A24	4	TDOT Acceptance	PAID	20	4/21/2022
26	1-A25	4	TDOT Acceptance	PAID	20	4/21/2022
27	1-A26	4	TDOT Acceptance	PAID	20	4/21/2022
28	1-A27	4	TDOT Acceptance	PAID	20	4/21/2022
29	1-A28	4	TDOT Acceptance	RRENT ESTIMA	21	5/19/2022
30	1-A29	4	TDOT Acceptance	RRENT ESTIM ${ }^{\text {A }}$	21	5/19/2022
31	1-A30	4	TDOT Acceptance	RRENT ESTIMA	21	5/19/2022
32	1-A31	1	Installed, Not Tested	NOT PAID	NOT YET PAID	
33	1-A32	0	Not Installed	NOT PAID	NOT YET PAID	
34	1-A33	1	Installed, Not Tested	NOT PAID	NOT YET PAID	
35	1-A34	1	Installed, Not Tested	NOT PAID	NOT YET PAID	
36	1-A35	1	Installed, Not Tested	NOT PAID	NOT YET PAID	
37	1-A36	1	Installed, Not Tested	NOT PAID	NOT YET PAID	
38	1-A37	1	Installed, Not Tested	NOT PAID	NOT YET PAID	
39	1-A38	1	Installed, Not Tested	NOT PAID	NOT YET PAID	
40	1-A39	0	Not Installed	NOT PAID	NOT YET PAID	
41	1-A40	0	Not Installed	NOT PAID	NOT YET PAID	
42	1-A41	0	Not Installed	NOT PAID	NOT YET PAID	
43	1-A42	0	Not Installed	NOT PAID	NOT YET PAID	
44	1-A43	0	Not Installed	NOT PAID	NOT YET PAID	
45	1-A44	0	Not Installed	NOT PAID	NOT YET PAID	
46	1-B1	4	TDOT Acceptance	RRENT ESTIM	21	5/18/2022
47	1-B2	4	TDOT Acceptance	RRENT ESTIM	21	5/18/2022
48	1-R2	Δ	tnot Arrentanre	RRENT FGTIMA	31	5/12/7027

Anchor Stressing \& Load Testing Tracking Progress using Excel

Progress Time Line

Progress
Time Line
APRIL 2021

Progress
Time Line
Source: TDOT

OCTOBER 2021

Source: TDOT

Progress time line

NOVEMBER 2021

Source: TDOT

Progress Time line

JANUARY 25, 2022

Source: TDOT

Progress time Line

MARCH 16, 2022

Progress Time Line

APRIL 19, 2022

Looking West ał Zone 3

MAY 2022

Looking East at Zone 3

MAY 2022

Progress Time Line

JUNE 14, 2022

Progress Time Line

AUGUST 16, 2022

End of Presentation - Time for Questions?

[^0]: Source: Moore, H., "A Geologic Trip Across Tennessee Interstate 40", University of Tennessee Press, 1994

